КЛІМАТИЧНА СТІЙКІСТЬ У МІСЬКОМУ ПЛАНУВАННІ: ПІДХІД ФРАЙБУРГА ДО КОНЦЕПЦІЇ АДАПТАЦІЇ ДО ЗМІН КЛІМАТУ

Автор(и)

DOI:

https://doi.org/10.32347/2076-815x.2025.89.355-387

Ключові слова:

кліматична стійкість, адаптація до змін клімату, міське планування, зелена інфраструктура, енергоефективність, управління водними ресурсами, Фрайбург, сталість, урбаністика

Анотація

У сучасних умовах зміни клімату міста стикаються зі зростаючими викликами, пов’язаними з підвищенням температури, екстремальними погодними явищами та порушенням водного балансу. Фрайбург є одним із провідних європейських міст, що впроваджує комплексну концепцію адаптації до змін клімату, поєднуючи зелену інфраструктуру, енергоефективне будівництво, інтегроване управління водними ресурсами та сталу мобільність. Дослідження аналізує основні стратегії та заходи, реалізовані у Фрайбурзі, їхню ефективність та можливість адаптації для українських міст. У статті наголошується на важливості прийнятті рішеннь на основі фактичних даних та необхідності розробки адаптаційних заходів, що враховують локальні особливості. 

Посилання

Field, C.B., Barros, V., Stocker, T.F. and Dahe, Q., eds., (2009). Managing the risks of extreme events and disasters to advance climate change adaptation [online]. Cambridge: Cambridge University Press. [Viewed 5 February 2025]. Available from: doi: 10.1017/cbo9781139177245. {in English}

UN Habitat, (no date). Resilient city. city resilience global programme [online]. Urban Resilience Hub. [Viewed 5 February 2025]. Available from: https://urbanresiliencehub.org/wpcontent/uploads/2022/12/Resilient-city.pdf. {in English}

UN Habitat, (no date). Climate resilience. city resilience global programme [online]. Urban Resilience Hub. [Viewed 5 February 2025]. Available from: https://urbanresiliencehub.org/wpcontent/uploads/2022/12/4-CLIMATE-RESILIENCE.pdf .{in English}

Berchtoldkrass Space&Options, (2019). Klimaanpassungskonzept Ein Entwicklungskonzept für das Handlungsfeld „Hitze“ [online]. [Viewed 7 November 2024]. Available from: https://www.freiburg.de/pb/site/Freiburg/get/params_E-2038560454/2071141/20201013_KLAK_Berichtdigital.pdf. {in German}

The City of Copenhagen, (2012). Cloudburst management plan [online]. [Viewed 19 January 2025]. Available from: https://interlace-hub.com/sites/default/files/cph_-_cloudburst_management_plan.pdf. {in English}

Horn, M.W.W., (2024). Digitalisation and sustainability: The Freiburg example [online]. Open Access Government. [Viewed 19 January 2025]. Available from: https://www.openaccessgovernment.org/digitalisation-and-sustainability-the-freiburg-example/181410/. {in English}

Universität Freiburg, (no date). Global change — geography [online]. Geographie - Nahtstelle zwischen Mensch und Natur — Geographie. [Viewed 5 February 2025]. Available from: https://www.geographie.uni-freiburg.de/en/research-interests/research-interests-glc. {in English}

Balabukh, V., Lavrynenko, O., Bilaniuk, V., Mykhnovych, A. and Pylypovych, O., (2018). Extreme weather events in ukraine: occurrence and changes. In: Extreme weather [online]. InTech. [Viewed 5 February 2025]. Available from: doi: 10.5772/intechopen.77306. {in English}

He, B.-J., Ding, L. and Prasad, D., (2019). Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustainable cities and society [online]. 47, 101472. [Viewed 5 February 2025]. Available from: doi: 10.1016/j.scs.2019.101472. {in English}

Haas, M., (2022). 'Ventilation corridors' funnel cool mountain air into steamy stuttgart [online]. Reasons to be Cheerful. [Viewed 5 February 2025]. Available from: https://reasonstobecheerful.world/stuttgart-ventilation-corridors-green-cool-air/. {in English}

Guo, A., Yue, W., Yang, J., Li, M., Xie, P., He, T., Zhang, M. and Yu, H., (2023). Quantifying the impact of urban ventilation corridors on thermal environment in Chinese megacities. Ecological indicators [online]. 156, 111072. [Viewed 5 February 2025]. Available from: doi: 10.1016/j.ecolind.2023.111072. {in English}

Liu, C., Shu, Q., Huang, S. and Guo, J., (2021). Modeling the impacts of city-scale “ventilation corridor” plans on human exposure to intra-urban PM2.5 concentrations. Atmosphere [online]. 12(10), 1269. [Viewed 5 February 2025]. Available from: doi: 10.3390/atmos12101269. {in English}

Sung, U.-J., Eum, J.-H., Son, J.-M. and Oh, J.-H., (2021). Planning strategies of wind corridor forests utilizing the properties of cold air. Land [online]. 10(6), 607. [Viewed 5 February 2025]. Available from: doi: 10.3390/land10060607. {in English}

Toren, B.I. and Sharmin, T., (2023). Comparison of building energy performance in three urban sites using field measurements and modelling in Kayseri, Turkiye. Journal of physics: conference series [online]. 2600(3), 032007. [Viewed 5 February 2025]. Available from: doi: 6596/2600/3/032007. {in English}

Oleiwi, M.Q., Sulaiman, M.K.A.M. and Mohamed, M.F., (2023). Passive Cooling Strategies in the hot climate: a review study. ARID international journal for science and technology [online]. 76–106. [Viewed 5 February 2025]. Available from: doi: 10.36772/arid.aijst.2023.6115. {in English}

Al-Shamkhee, D., Al-Aasam, A. B., Al-Waeli, A.H.A., Abusaibaa, G.Y. and Moria, H., (2022). Passive cooling techniques for ventilation: an updated review. Renewable energy and environmental sustainability [online]. 7, 23. [Viewed 5 February 2025]. Available from: doi: 10.1051/rees/2022011. {in English}

Javanroodi and M. Nik, (2019). Impacts of microclimate conditions on the energy performance of buildings in urban areas. Buildings [online]. 9(8), 189. [Viewed 5 February 2025]. Available from: doi: 10.3390/buildings9080189. {in English}

Hong, T., Xu, Y., Sun, K., Zhang, W., Luo, X. and Hooper, B., (2021). Urban microclimate and its impact on building performance: A case study of San Francisco. Urban climate [online]. 38, 100871. [Viewed 5 February 2025]. Available from: doi: 10.1016/j.uclim.2021.100871. {in English}

Sim, D., (2019). Soft City: Building Density for Everyday Life. Island Press. {in English}

Bass, B., Liu, K. K. Y. and Baskaran, B. A., (2013). Evaluating rooftop and vertical gardens as an adaptation strategy for urban areas. National Research Council Canada [online]. article no: NRCC- 46737. [Viewed 5 February 2025]. Available from: doi: 10.4224/20386110. {in English}

Peck, S., Kuhn, M. Design Guidelines for Green Roofs. Canada Mortgage and Housing Corporation, Ottawa, and the Ontario Association of Architects, Toronto, 2003. {in English}

U.S. Department of Transportation Federal Highway Administration. Annual Vehicle Distance Traveled in Miles and Related Data-2004. Highway Statistics 2004. October 2005. URL: http://www.fhwa.dot.gov/policy/ohim/hs04/htm/vm1.htm (дата звернення: 19.10.2007). {in English}

Hutchinson, D., Abrams, P. та ін. Stormwater Monitoring Two Ecoroofs in Portland, Oregon, USA. Proceedings of Greening Rooftops for Sustainable Communities, 2003, Chicago, IL, 2003. {in English}

Portland. City of Portland EcoRoof Program Questions and Answers. Bureau of Environmental Services, Office of Sustainable Development, City of Portland, Oregon, PL 0203, 2002. {in English}

Synnefa, A., Santamouris, M. and Akbari, H., (2007). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and buildings [online]. 39(11), 1167–1174. [Viewed 5 February 2025]. Available from: doi: 10.1016/j.enbuild.2007.01.004 .{in English}

Moran, A., Hunt, B. and Jennings, G., (2003). A north carolina field study to evaluate greenroof runoff quantity, runoff quality, and plant growth. In: World water and environmental resources congress 2003, Philadelphia, Pennsylvania, United States [online]. Reston, VA: American Society of Civil Engineers. [Viewed 5 February 2025]. Available from: doi: 10.1061/40685(2003)335. {in English}

PVKh membrana: prodazh, tsina, montazh u kyievi ta dnipri vid yevrokrovlia | euroroofing.ua [online], (no date). TOV «Kompanyia Evrokrovlia». [Viewed 9 February 2025]. Available from: https://euroroofing.ua/green_roofs/. {in Ukrainian}

Technische Universität Darmstadt and Technische Universität Braunschweig, (2014). Potenziale und Wechselwirkungen. Interdisziplinärer Leitfaden als Planungshilfe zur Nutzung energetischer, klimatischer und gestalterischer Potenziale sowie zu den Wechselwirkungen von Gebäude, Bauwerksbegrünung und Gebäudeumfeld. Bonn: Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e. V. (FLL). {in German}

Lin, B.-S. and Lin, Y.-J., (2010). Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience [online]. 45(1), 83–86. [Viewed 5 February 2025]. Available from: doi: 10.21273/hortsci.45.1.83. {in English}

Gillner, S., Vogt, J., Tharang, A., Dettmann, S. and Roloff, A., (2015). Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape and urban planning [online]. 143, 33–42. [Viewed 5 February 2025]. Available from: doi: 10.1016/j.landurbplan.2015.06.005. {in English}

Song, Y., Zhou, M., Tan, J., Cheng, J., Wang, Y., Feng, X. and Yu, H., (2020). Association between street greenery and physical activity among chinese older adults in beijing, china. Urban forestry & urban greening [online]. 55. [Viewed 5 February 2025]. Available from: doi: 5323147/v1. {in English}

Kim, U., Lee, J. and He, S. Y., (2021). Pedestrianization impacts on air quality perceptions and environment satisfaction: the case of regenerated streets in downtown seoul. International journal of environmental research and public health [online]. 18(19), 10225. [Viewed 5 February 2025]. Available from: doi: 10.3390/ijerph181910225. {in English}

Barron, S., Rugel, E., Cheng, Z., Nesbitt, L., Sheppard, S., Czekajlo, A. and Girling, C., (2023). Achieving the urban tree trifecta: scenario modelling for salubrious, resilient, and diverse urban forests in densifying cities. Arboriculture & urban forestry [online]. jauf.2023.022. [Viewed 11 March 2025]. Available from: doi: 10.48044/jauf.2023.022. {in English}

Sarminingsih, A., Nugraha, W. D. and Shafanisa, A. A., (2024). Evaluation on implementing green stormwater infrastructure to reduce runoff and conserve water in Banyumanik, Semarang. IOP conference series: earth and environmental science [online]. 1414(1), 012057. [Viewed 5 February 2025]. Available from: doi: 1315/1414/1/012057 {in English}

Petit-Boix, A., Sevigné-Itoiz, E., Rojas-Gutierrez, L. A., Barbassa, A. P., Josa, A., Rieradevall, J. and Gabarrell, X., (2015). Environmental and economic assessment of a pilot stormwater infiltration system for flood prevention in Brazil. Ecological engineering [online]. 84, 194–201. [Viewed 5 February 2025]. Available from: doi: 10.1016/j.ecoleng.2015.09.010. {in English}

Wang, M., Zhang, D., Li, Y., Hou, Q., Yu, Y., Qi, J., Fu, W., Dong, J. and Cheng, Y., (2018). Effect of a submerged zone and carbon source on nutrient and metal removal for stormwater by bioretention cells. Water [online]. 10(11), 1629. [Viewed 5 February 2025]. Available from: doi: 10.3390/w10111629. {in English}

Natarajan, P. and Davis, A. P., (2015). Performance of a ‘transitioned’ infiltration basinpart 1: TSS, metals, and chloride removals. Water environment research [online]. 87(9), 823–834. [Viewed 5 February 2025]. Available from: doi: 10.2175/106143015x14362865226112. {in English}

Urban climate resilience - adaptation community [online], (no date). Adaptation Community. [Viewed 18 January 2025]. Available from: https://www.adaptationcommunity.net/urban-climate-resilience/. {in English}

Chakraborty, A., Chesher, B., Dibis, F. and Issa, N., (2019). Urban resilience: a look into global climate change impacts and possible design mitigation. (1). [Viewed 18 January 2025]. Available from: https://aesg.com/wp-content/uploads/2020/07/Quest-towards-Urban-Resilience-Climate-Change-Impacts-and-Design-Solutions.pdf. {in English}

Jha, A.K., Miner, T.W. and Stanton-Geddes, Z., eds., (2013). Building urban resilience [online]. The World Bank. [Viewed 18 January 2025]. Available from: doi: 0-8213-8865-510.1596/978. {in English}

Fairholme, S., (2019). Urban resilience infrastructure: an imperative in a climate uncertain world [online]. The Rockefeller Foundation. [Viewed 8 February 2025]. Available from: https://www.rockefellerfoundation.org/perspective/urban-resilience-infrastructure-imperative-climateuncertain-world/. {in English}

Abbas, S.S. and Ameen, S.K., (2019). Urban resilience and city infrastructure urban resilience of baghdad. Iraqi journal of architecture and planning [online]. 18(2), 87–100. [Viewed 8 February 2025]. Available from: doi: 10.36041/iqjap.v15i2.488. {in English}

Nik, V.M., Perera, A.T.D. and Chen, D., (2020). Towards climate resilient urban energy systems: a review. National science review [online]. [Viewed 8 February 2025]. Available from: doi: 10.1093/nsr/nwaa134. {in English}

Brears, R.C., (no date). Urban climate resilient water management: strategies and innovations - our future water [online]. Our Future Water. [Viewed 8 February 2025]. Available from: https://www.ourfuturewater.com/2023/03/23/urban-climate-resilient-water-management-strategies-andinnovations/. {in English}

The role of green infrastructure in enhancing urban ecological resilience, (2024). oliwia [online]. 25 January 2024. [Viewed 8 February 2025]. Available from: https://one-moretree.org/blog/2024/01/25/the-role-of-green-infrastructure-in-enhancing-urban-ecological-resilience/. {in English}

Lugten, E. and Hariharan, N., (2022). Strengthening health systems for climate adaptation and health security: key considerations for policy and programming. Health security [online]. [Viewed 8 February 2025]. Available from: doi: 10.1089/hs.2022.0050. {in English}

Plan dii z adaptatsii do naslidkiv zminy klimatu mista Zaporizhzhia [online], (no date). Zaporizka miska rada. [Viewed 8 February 2025]. Available from: https://zp.gov.ua/upload/editor/3_proekt__planu_dij.pdf. {in Ukrainian}

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. and Rose, S.K., (2011). The representative concentration pathways: an overview. Climatic change [online]. 2), 109(15–31. [Viewed 8 February 2025]. Available from: doi: 011-0148-z10.1007/s10584. {in English}

Shcherbakova, O., (2025). Metodolohichni zasady otsinky efektyvnosti instytutsiinoho zabezpechennia klimatychnoho finansuvannia. Economic journal of lesya ukrainka volyn national university [online]. 4(40), 111–123. [Viewed 11 March 2025]. Available from: doi: 4618-2024-04-111-12310.29038/2786. {in Ukrainian}

Tymashkov, M., (2024). Methods and techniques of architectural environment forming under the conditions of global climate change: the problems of flooding. Current problems of architecture and urban planning [online]. (68), 335–348. [Viewed 11 March 2025]. Available from: doi: 3455.2024.68.335-34810.32347/2077. {in English}

Maksymova, I., (2024). Adaptatsiia svitovoi ekonomiky do zminy klimatu: finansovyi ta tsyfrovyi aspekty. Adaptive management theory and practice economics [online]. 19(38). [Viewed 11 March 2025]. Available from: doi: 0654-19(38)-2310.33296/2707. {in Ukrainian}

Berchtoldkrass space & options, (2024). Rahmenplan Stadtklima Bern. Konzept zur städtebaulichen Anpassung an den Klimawandel [online]. Bern. [Viewed 7 November 2024]. Available from: https://www.bern.ch/themen/umwelt-natur-und-energie/klima/klimaanpassung/planung-undumsetzung-in-der-stadt-bern/rahmenplan-stadtklima/downloads/rahmenplan-stadtklima-bern-20240918.pdf/download. {in German}

Berchtoldkrass space & options, (2014). Städtebaulichen Rahmenplan Klimaanpassung Stadt Karlsruhe [online]. [Viewed 19 January 2025]. Available from: https://pd.lubw.de/66635. {in German}

Matzarakis, A. and Endler, C., (2010). Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. International journal of biometeorology [online]. 54(4), 479–483. [Viewed 11 March 2025]. Available from: doi: 009-0296-210.1007/s00484. {in English}

Kronsell, A., (2013). Legitimacy for climate policies: politics and participation in the Green City of Freiburg. Local environment [online]. 18(8), 965–982. [Viewed 11 March 2025]. Available from: doi: 10.1080/13549839.2012.748732. {in English}

##submission.downloads##

Опубліковано

2025-04-25

Як цитувати

Кузишин, А., Мартенс, І., & Григоращук, Н. (2025). КЛІМАТИЧНА СТІЙКІСТЬ У МІСЬКОМУ ПЛАНУВАННІ: ПІДХІД ФРАЙБУРГА ДО КОНЦЕПЦІЇ АДАПТАЦІЇ ДО ЗМІН КЛІМАТУ. Містобудування та територіальне планування, (89), 355–387. https://doi.org/10.32347/2076-815x.2025.89.355-387

Номер

Розділ

Статті